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The Worst-Case Entropy

Definition: Worst-Case Entropy

Let U be a set, the worst-case entropy Hwc(U) of U is defined as

Hwc(U) = log2|U|

Example, if U = {dog, cat, bird, mouse}, then Hwc(U) = log2|U| = log2 4 = 2
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The Worst-Case Entropy of a String

Consider the string S = aaaaaabaaaaaaaaabaaa.

• If we consider U as the set of strings of length n = 20 over an
alphabet of size σ = 2, then:

Hwc(U) = n log σ = 20 bits

• If U is the set of strings where a and b appear 18 and 2 times:

Hwc(U) = log
(
20
2

)
≈ 7.57 bits
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The Worst-Case Entropy of a Trie

a b

aa b

a

There exists a famous worst-case formula

for the set of tries having n nodes over an

alphabet of size σ.

Hwc(U) = log
1

n

(
nσ

n − 1

)
[1]

Ex. if n = 7 and σ = 2, then log 1
7

(14
6

)
≈ 8.7 bits

What if we consider tries with a given symbol distribution?

1. R. Graham, D. Knuth, and O. Patashnik: Concrete Mathematics. Addison-Wesley. (1994)



Intro: Worst-Case Entropy Combinatorial Problem Empirical Entropy XBWT and XBWT runs Conclusions

The Worst-Case Entropy of a Trie

1 2

1 2 1 2

1 2 1 2 1 2

1 2

The number of t-ary trees with a fixed

number of first, second, . . ., t-th children

was computed using generating

functions [2].

Ex. the 2-ary on the left has 4 first children

and 2 second children.

• In bijection with our class of tries.

• |U| = 1

n

∏
c∈Σ

(
n

nc

)
,

nc = # edges labeled by the character c.

2. H. Prodinger. Counting edges according to edge-type in t-ary trees. arXiv. (2022)
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Our contributions

1 Provide an alternative proof for the formula |U| = 1

n

∏
c∈Σ

(
n

nc

)
By using a simple bijection!

2 Introducing corresponding worst-case entropy Hwc(U)

3 Introducing an empirical entropy for tries Hk(T )

4 Compress and index a trie in nHk(T )+ o(n) bits using the XBWT
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The Function f : U → M
Domain: U ← set of tries having nc edges labeled by c ∈ Σ

Codomain: M← set of σ × n binary matrices having nc ones at row c.

u1

u2 u3

u4 u5

a b

a c

f

u1 u2 u3 u4 u5

a 1 0 1 0 0

b 1 0 0 0 0

c 0 0 1 0 0

To compute the matrix M = f (T ):

1 Sort the nodes of T based on a pre-order visit. (u1, u2, u3, u4, u5 in fig.)

2 Set M[i][c] = 1 iff there exists the edge ui
c−→ v.
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Inverting Function f

The function f is injective, but not surijective: some matrices inM do not

correspond to any trie.

u1 u2 u3 u4 u5

a 1 0 0 1 0

b 1 0 0 0 0

c 0 0 0 0 1

f−1

u1

u2 u3

u4

u5

a b

a

c

Connectivity constraints could be violated during the inversion process.



Intro: Worst-Case Entropy Combinatorial Problem Empirical Entropy XBWT and XBWT runs Conclusions

Inverting Function f

The function f is injective, but not surijective: some matrices inM do not

correspond to any trie.

u1 u2 u3 u4 u5

a 1 0 0 1 0

b 1 0 0 0 0

c 0 0 0 0 1

f−1

u1

u2 u3

u4

u5

a b

a

c

Connectivity constraints could be violated during the inversion process.



Intro: Worst-Case Entropy Combinatorial Problem Empirical Entropy XBWT and XBWT runs Conclusions

Inverting Function f

The function f is injective, but not surijective: some matrices inM do not

correspond to any trie.

u1 u2 u3 u4 u5

a 1 0 0 1 0

b 1 0 0 0 0

c 0 0 0 0 1

f−1

u1

u2 u3

u4

u5

a b

a

c

Connectivity constraints could be violated during the inversion process.



Intro: Worst-Case Entropy Combinatorial Problem Empirical Entropy XBWT and XBWT runs Conclusions

Inverting Function f

The function f is injective, but not surijective: some matrices inM do not

correspond to any trie.

u1 u2 u3 u4 u5

a 1 0 0 1 0

b 1 0 0 0 0

c 0 0 0 0 1

f−1

u1

u2 u3

u4

u5
Not connected!

a b

a

c

Connectivity constraints could be violated during the inversion process.
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Inverting Function f

The function f is injective, but not surijective: some matrices inM do not

correspond to any trie.

u1 u2 u3 u4 u5

a 1 0 0 1 0

b 1 0 0 0 0

c 0 0 0 0 1

f−1

u1

u2 u3

u4

u5
Pending edge!

a b

a

c

Connectivity constraints could be violated during the inversion process.
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Rotating the Matrix

What happens if we rotate the matrix?

u1 u2 u3 u4 u5

a 1 0 0 1 0

b 1 0 0 0 0

c 0 0 0 0 1

Rotating

two columns!

u1 u2 u3 u4 u5

a 1 0 1 0 0

b 0 0 1 0 0

c 0 1 0 0 0

u1

u2

u3

u4 u5

Connected ,
a

c

a b

Now the matrix is invertible!
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New Worst-Case Formula Measure

That’s not by chance! Using a result about integer sequences [3] we deduced:

1 Every matrix M inM has exactly n distinct rotations. n = # of columns

2 The rotation of M that is invertible exists and is unique.

We observe |M| =
∏
c∈Σ

(
n

nc

)
nc = number of ones at the c-th row

Consequently, |U| = 1

n

∏
c∈Σ

(
n

nc

)
and Hwc(U) =

∑
c∈Σ

log

(
n

nc

)
− log n.

3. G. Rote. Binary trees with nodes having 0, 1, and 2 children. Séminaire Lotharingien de Combinatoire. (1997)
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Formula Empirical Entropy for Tries

For w ∈ Σk and c ∈ Σ, consider the integers nw and nw,c:

• nw = |{u ∈ V | u has context w}|
• nw,c = |{u ∈ V | u has context w and there exists u

c−→ v}

u1

u2 u5

u3 u4 u6

a b

a b a

Example: In figure, na = 3.

Indeed, u2, u3, and u6 are reached
by the string a.

Definition: k-th order empirical entropy Hk (T )

Hk(T ) =
∑
c∈Σ

∑
w∈Σk

nw,c

n
log

(
nw
nw,c

)
+

nw − nw,c

n
log

(
nw

nw − nw,c

)
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Properties for our Entropy Measures

Properties analogous to the string entropies:

1 nH0(T ) = Hwc(T ) + O(σ log n)

2 Hk+1(T ) ≤ Hk(T ), for every k ≥ 0

a b

a b

c

a

a b

c

c

b
c

b

c

• Worst-case entropy without character
frequencies [1] (not ours!):

log 1
n

( nσ
n−1

)
= log 1

15

(45
14

)
≈ 33.37 bits.

• 1st-order empirical entropy (ours!)
nH1(T ) ≈ 7.29 bits

1. R. Graham, D. Knuth, and O. Patashnik: Concrete Mathematics. Addison-Wesley. (1994)
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XBWT of a trie

u1

u2

u3

u4 u10

u9

u12

u7

u8

u11

u6

u5

a

a

a

b

b

b

c
a

c a

a

out(u)← set of outgoing labels of u

u1, u2, . . . , un ← nodes sorted co-lexicographically

Definition: XBWT [4]

XBWT(T ) = out(u1), out(u2), . . . , out(un)

We can compress and index (count queries) a trie in:

nHk(T ) + o(n) ∀k = o(logσ n)

co-lex u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12
a a a a a a

XBWT b b b
c c

4. P. Ferragina et al. Compressing and Indexing Labeled Trees, with Applications. J. ACM. (2009)



Intro: Worst-Case Entropy Combinatorial Problem Empirical Entropy XBWT and XBWT runs Conclusions

XBWT of a trie

u1

u2

u3

u4 u10

u9

u12

u7

u8

u11

u6

u5

a

a

a

b

b

b

c
a

c a

a

out(u)← set of outgoing labels of u

u1, u2, . . . , un ← nodes sorted co-lexicographically

Definition: XBWT [4]

XBWT(T ) = out(u1), out(u2), . . . , out(un)

We can compress and index (count queries) a trie in:

nHk(T ) + o(n) ∀k = o(logσ n)

co-lex u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12
a a a a a a

XBWT b b b
c c

4. P. Ferragina et al. Compressing and Indexing Labeled Trees, with Applications. J. ACM. (2009)



Intro: Worst-Case Entropy Combinatorial Problem Empirical Entropy XBWT and XBWT runs Conclusions

XBWT runs

u1

u2

u3

u4 u10

u9

u12

u7

u8

u11

u6

u5

a

a

a

b

b

b

c
a

c a

a

XBWT run-break if: c ∈ out(ui ) and c /∈ out(ui+1)

r -index for tries in: O(r log n) + o(n) bits [5]

We proved r ≤ nHk(T ) + σk+1

(similar relation for strings! [6])

co-lex u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12
a a a a a a

XBWT b b b
c c

5. N. Prezza. On Locating Paths in Compressed Tries. SODA. (2021)

6. V. Mäkinen, G. Navarro. Succinct Suffix Arrays Based on RLE. Nordic Journal of Computing. (2005)
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Thank you for your attention ,

1 Provide an alternative proof for the formula |U| =
1

n

∏
c∈Σ

( n

nc

)
2 Introducing corresponding worst-case entropy Hwc (U)

3 Introducing an empirical entropy for tries Hk (T )

4 Compress and index a trie in nHk (T ) + o(n) bits using the XBWT
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