Analysing New Entropy Measures for Tries

32nd International Symposium on String Processing and Information Retrieval

Lorenzo Carfagna¹ and Carlo Tosoni²

University of Pisa, Italy

2. Ca' Foscari University of Venice, Italy

City St George's, University of London

10/09/2025

The Worst-Case Entropy

Definition: Worst-Case Entropy

Let $\mathcal U$ be a set, the worst-case entropy $\mathcal H^{wc}(\mathcal U)$ of $\mathcal U$ is defined as

$$\mathcal{H}^{\textit{wc}}(\mathcal{U}) = \log_2 \lvert \mathcal{U} \rvert$$

Example, if $\mathcal{U} = \{\text{dog, cat, bird, mouse}\}\$, then $\mathcal{H}^{wc}(\mathcal{U}) = \log_2 |\mathcal{U}| = \log_2 4 = 2$

The Worst-Case Entropy of a String

Consider the string S = aaaaaabaaaaaaaaaabaaa.

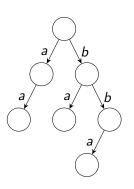
• If we consider \mathcal{U} as the set of strings of length n=20 over an alphabet of size $\sigma=2$, then:

$$\mathcal{H}^{wc}(\mathcal{U}) = n \log \sigma = 20$$
 bits

• If \mathcal{U} is the set of strings where **a** and **b** appear 18 and 2 times:

$$\mathcal{H}^{wc}(\mathcal{U}) = \log \binom{20}{2} \approx 7.57$$
 bits

The Worst-Case Entropy of a Trie



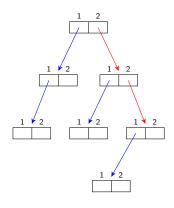
There exists a famous worst-case formula for the **set of tries** having **n** nodes over an alphabet of size σ .

$$\mathcal{H}^{wc}(\mathcal{U}) = \log \frac{1}{n} \binom{n\sigma}{n-1}$$
 [1]

Ex. if n=7 and $\sigma=2$, then $\log \frac{1}{7} \binom{14}{6} \approx 8.7$ bits

What if we consider tries with a **given symbol distribution**?

1. R. Graham, D. Knuth, and O. Patashnik: Concrete Mathematics, Addison-Wesley, (1994)



The number of *t*-ary trees with a **fixed number of first, second, ..., t-th children** was computed using generating functions [2].

Ex. the 2-ary on the left has 4 first children and 2 second children.

- In bijection with our class of tries.
- $|\mathcal{U}| = \frac{1}{n} \prod_{c \in \Sigma} \binom{n}{n_c}$,

 $n_{\rm C}$ = # edges labeled by the character c.

2. H. Prodinger. Counting edges according to edge-type in t-ary trees. arXiv. (2022)

Our contributions

- **1** Provide an **alternative proof** for the formula $|\mathcal{U}| = \frac{1}{n} \prod_{c \in \Sigma} \binom{n}{n_c}$ By using a simple bijection!
- **2** Introducing corresponding worst-case entropy $\mathcal{H}^{wc}(\mathcal{U})$
- 3 Introducing an empirical entropy for tries $\mathcal{H}_k(\mathcal{T})$
- **4** Compress and index a trie in $n\mathcal{H}_k(\mathcal{T}) + o(n)$ bits using the XBWT

The Function $f: \mathcal{U} \to \mathcal{M}$

Domain: $\mathcal{U} \leftarrow \mathsf{set}$ of tries having $\mathsf{n_c}$ edges labeled by $c \in \Sigma$

Codomain: $\mathcal{M} \leftarrow \text{set of } \sigma \times n \text{ binary matrices having } \mathbf{n_c} \text{ ones at row } c.$

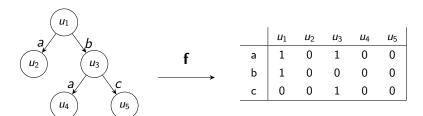
To compute the matrix M = f(T):

- **1** Sort the nodes of \mathcal{T} based on a pre-order visit. $(u_1, u_2, u_3, u_4, u_5 \text{ in fig.})$
- 2 Set M[i][c] = 1 iff there exists the edge $u_i \xrightarrow{c} v$.

The Function $f: \mathcal{U} \to \mathcal{M}$

Domain: $\mathcal{U} \leftarrow \text{set of tries having } \mathbf{n_c} \text{ edges labeled by } c \in \Sigma$

Codomain: $\mathcal{M} \leftarrow \text{set of } \sigma \times n \text{ binary matrices having } \mathbf{n_c} \text{ ones at row } c.$



To compute the matrix M = f(T):

- **1** Sort the nodes of \mathcal{T} based on a pre-order visit. $(u_1, u_2, u_3, u_4, u_5 \text{ in fig.})$
- 2 Set M[i][c] = 1 iff there exists the edge $u_i \xrightarrow{c} v$.

The function f is **injective**, but **not surijective**: some matrices in \mathcal{M} do not correspond to any trie.

	u_1	u_2	u_3	u_4	<i>u</i> ₅
а	1	0	0	1	0
b	1	0	0	0	0
С	0	0	0	0	1

The function f is **injective**, but **not surijective**: some matrices in \mathcal{M} do not correspond to any trie.

							$a \stackrel{u_1}{\smile} b$
	u_1	u_2	u_3	u_4	u 5		(U2)
а	1	0	0	1	0	\mathbf{f}^{-1}	
b	1 1 0	0	0	0	0	· ———	
С	0	0	0	0	1		

The function f is **injective**, but **not surijective**: some matrices in \mathcal{M} do not correspond to any trie.

						$a \stackrel{u_1}{\smile} b$
	u_1					(u_2) (u_3)
а	1 1 0	0	0	1	0	f^{-1}
b	1	0	0	0	0	· →
С	0	0	0	0	1	

The function f is **injective**, but **not surijective**: some matrices in \mathcal{M} do not correspond to any trie.

						a b
	u_1	u ₂	и3	<i>u</i> ₄	u 5	(u_2) (u_3)
а	1	0	0	1	0	\mathbf{f}^{-1}
b	1	0	0	0	0	\longrightarrow $a \stackrel{(u_4)}{\longrightarrow}$
С	0	0	0	0	1	Not connected!

The function f is **injective**, but **not surijective**: some matrices in \mathcal{M} do not correspond to any trie.

	u_1	u_2	и3	u_4	u ₅
a	1	0	0	1	0
b	1	0	0	0	0
С	0	0	0	0	1

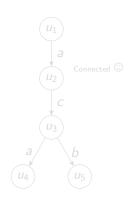
Rotating the Matrix

What happens if we rotate the matrix?

	u_1	u_2	u ₃	u_4	u ₅
а	1	0	0	1	0
b	1	0	0	0	0
С	0	0	0	0	1

Rotating two columns!

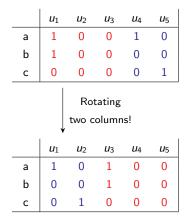
	u_1	u 2	U 3	U 4	U 5
а	1	0	1	0	0
b	0	0	1	0	0
С	0	1	0	0	0

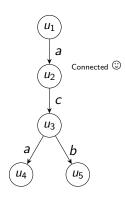


Now the matrix is invertible!

Rotating the Matrix

What happens if we rotate the matrix?





Now the matrix is invertible!

New Worst-Case Formula Measure

That's not by chance! Using a result about integer sequences [3] we deduced:

- **1** Every matrix M in \mathcal{M} has exactly **n** distinct rotations. n = # of columns
- 2 The rotation of M that is invertible exists and is unique.

We observe
$$|\mathcal{M}|=\prod_{c\in\Sigma} \binom{n}{n_c}$$
 $n_c=$ number of ones at the c -th row

Consequently,
$$|\mathcal{U}| = \frac{1}{n} \prod_{c \in \Sigma} \binom{n}{n_c}$$
 and $\mathcal{H}^{wc}(\mathcal{U}) = \sum_{c \in \Sigma} \log \binom{n}{n_c} - \log n$.

3. G. Rote. Binary trees with nodes having 0, 1, and 2 children. Séminaire Lotharingien de Combinatoire. (1997)

New Worst-Case Formula Measure

That's not by chance! Using a result about integer sequences [3] we deduced:

- **1** Every matrix M in \mathcal{M} has exactly **n** distinct rotations. n = # of columns
- **2** The rotation of M that is invertible exists and is unique.

We observe
$$|\mathcal{M}| = \prod_{c \in \Sigma} \binom{n}{n_c}$$
 $n_c =$ number of ones at the c -th row

Consequently,
$$|\mathcal{U}| = \frac{1}{n} \prod_{c \in \Sigma} \binom{n}{n_c}$$
 and $\mathcal{H}^{wc}(\mathcal{U}) = \sum_{c \in \Sigma} \log \binom{n}{n_c} - \log n_c$

3. G. Rote. Binary trees with nodes having 0, 1, and 2 children. Séminaire Lotharingien de Combinatoire. (1997)

Intro: Worst-Case Entropy

That's not by chance! Using a result about integer sequences [3] we deduced:

- **1** Every matrix M in \mathcal{M} has exactly **n** distinct rotations. n = # of columns
- **2** The rotation of M that is invertible exists and is unique.

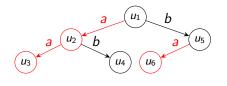
We observe
$$|\mathcal{M}|=\prod_{c\in\Sigma} \binom{n}{n_c}$$
 $n_c=$ number of ones at the c -th row

Consequently,
$$|\mathcal{U}| = \frac{1}{n} \prod_{c \in \Sigma} \binom{n}{n_c}$$
 and $\mathcal{H}^{wc}(\mathcal{U}) = \sum_{c \in \Sigma} \log \binom{n}{n_c} - \log n$.

3. G. Rote. Binary trees with nodes having 0, 1, and 2 children. Séminaire Lotharingien de Combinatoire. (1997)

For $w \in \Sigma^k$ and $c \in \Sigma$, consider the integers $\mathbf{n_w}$ and $\mathbf{n_{w,c}}$:

- $\mathbf{n_w} = |\{u \in V \mid u \text{ has context } w\}|$
- $\mathbf{n}_{\mathbf{w},\mathbf{c}} = |\{u \in V \mid u \text{ has context } w \text{ and there exists } u \xrightarrow{c} v\}$



Example: In figure, $n_a = 3$.

Indeed, u_2 , u_3 , and u_6 are reached by the string a.

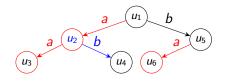
Definition: k-th order empirical entropy $\mathcal{H}_k(\mathcal{T})$

$$\mathcal{H}_k(\mathcal{T}) = \sum_{c \in \Sigma} \sum_{w \in \Sigma^k} \frac{n_{w,c}}{n} \log \left(\frac{n_w}{n_{w,c}} \right) + \frac{n_w - n_{w,c}}{n} \log \left(\frac{n_w}{n_w - n_{w,c}} \right)$$

Formula Empirical Entropy for Tries

For $w \in \Sigma^k$ and $c \in \Sigma$, consider the integers \mathbf{n}_w and $\mathbf{n}_{w,c}$:

- $\mathbf{n}_{\mathbf{w}} = |\{u \in V \mid u \text{ has context } w\}|$
- $\mathbf{n}_{\mathbf{w},\mathbf{c}} = |\{u \in V \mid u \text{ has context } w \text{ and there exists } u \xrightarrow{c} v\}$



Example: In figure, $n_{a,b} = 1$.

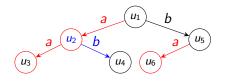
Among the nodes reached by a, only u_2 has an outgoing edge labeled by b.

$$\mathcal{H}_k(\mathcal{T}) = \sum_{c \in \Sigma} \sum_{w \in \Sigma^k} \frac{n_{w,c}}{n} \log \left(\frac{n_w}{n_{w,c}} \right) + \frac{n_w - n_{w,c}}{n} \log \left(\frac{n_w}{n_w - n_{w,c}} \right)$$

Formula Empirical Entropy for Tries

For $w \in \Sigma^k$ and $c \in \Sigma$, consider the integers \mathbf{n}_w and \mathbf{n}_w c:

- $\mathbf{n}_{\mathbf{w}} = |\{u \in V \mid u \text{ has context } w\}|$
- $\mathbf{n}_{\mathbf{w},\mathbf{c}} = |\{u \in V \mid u \text{ has context } w \text{ and there exists } u \xrightarrow{c} v\}$



Example: In figure, $n_{a,b} = 1$.

Among the nodes reached by a. only u2 has an outgoing edge labeled by b.

Definition: k-th order empirical entropy $\mathcal{H}_k(\mathcal{T})$

$$\mathcal{H}_k(\mathcal{T}) = \sum_{c \in \Sigma} \sum_{w \in \Sigma^k} \frac{n_{w,c}}{n} \log \left(\frac{n_w}{n_{w,c}} \right) + \frac{n_w - n_{w,c}}{n} \log \left(\frac{n_w}{n_w - n_{w,c}} \right)$$

Properties for our Entropy Measures

Properties analogous to the string entropies:

2
$$\mathcal{H}_{k+1}(\mathcal{T}) \leq \mathcal{H}_k(\mathcal{T})$$
, for every $k \geq 0$



• Worst-case entropy without character frequencies [1] (not ours!):

$$\log \frac{1}{n} \binom{n0}{n-1} = \log \frac{1}{15} \binom{43}{14} \approx 33.37 \text{ bits}$$

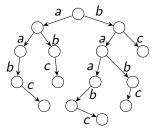
• 1st-order empirical entropy (ours!) $n\mathcal{H}_1(\mathcal{T}) \approx$ 7.29 bits

1. R. Graham, D. Knuth, and O. Patashnik: Concrete Mathematics. Addison-Wesley. (1994,

Properties for our Entropy Measures

Properties analogous to the string entropies:

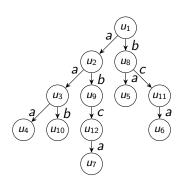
2
$$\mathcal{H}_{k+1}(\mathcal{T}) \leq \mathcal{H}_k(\mathcal{T})$$
, for every $k \geq 0$



- Worst-case entropy without character frequencies [1] (not ours!): $\log \frac{1}{5} \binom{n\sigma}{n-1} = \log \frac{1}{15} \binom{45}{14} \approx 33.37$ bits.
- 1st-order empirical entropy (ours!) $n\mathcal{H}_1(\mathcal{T}) \approx$ 7.29 bits

1. R. Graham, D. Knuth, and O. Patashnik: Concrete Mathematics. Addison-Wesley. (1994)

XBWT of a trie



 $out(u) \leftarrow \text{set of outgoing labels of } u$ $u_1, u_2, \dots, u_n \leftarrow \text{nodes sorted } \mathbf{co\text{-lexicographically}}$

Definition: XBWT [4]

$$XBWT(T) = out(u_1), out(u_2), \dots, out(u_n)$$

We can compress and index (count queries) a trie in:

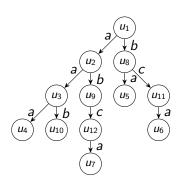
$$n\mathcal{H}_k(\mathcal{T}) + o(n) \quad \forall k = o(\log_{\sigma} n)$$

co-lex	u_1	<i>u</i> ₂	и3	и ₄	и ₅	и ₆	u ₇	и ₈	и9	<i>u</i> ₁₀	<i>u</i> ₁₁	u ₁₂
	a	a	a					a			a	а
XBWT	b	Ь	b									
								С	С			

4. P. Ferragina et al. Compressing and Indexing Labeled Trees, with Applications. J. ACM. (2009)

XBWT of a trie

Intro: Worst-Case Entropy



 $out(u) \leftarrow \text{set of outgoing labels of } u$ $u_1, u_2, \dots, u_n \leftarrow \text{nodes sorted } \mathbf{co\text{-lexicographically}}$

Definition: XBWT [4]

$$XBWT(T) = out(u_1), out(u_2), \dots, out(u_n)$$

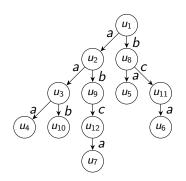
We can compress and index (count queries) a trie in:

$$n\mathcal{H}_k(\mathcal{T}) + o(n) \quad \forall k = o(\log_{\sigma} n)$$

co-lex	u_1	u_2	и3	u_4	u_5	<i>и</i> ₆	u ₇	и ₈	и9	u_{10}	u_{11}	u ₁₂
	а	а	a					а			а	a
XBWT	b	b	Ь									
								С	С			

4. P. Ferragina et al. Compressing and Indexing Labeled Trees, with Applications. J. ACM. (2009)

XBWT runs



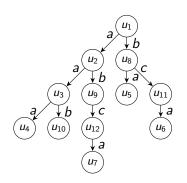
XBWT run-break if: $c \in out(u_i)$ and $c \notin out(u_{i+1})$ r-index for tries in: $O(r \log n) + o(n)$ bits [5]

We proved $r \leq n\mathcal{H}_k(\mathcal{T}) + \sigma^{k+1}$ (similar relation for strings! [6])

co-lex	u_1	u 2	из	И4	и5	и ₆	и7	и ₈	U 9	<i>u</i> ₁₀	u ₁₁	u ₁₂	
	a	a	a					a			a	a	
XBWT	b	Ь	Ь										
								С	С				

- 5. N. Prezza. On Locating Paths in Compressed Tries. SODA. (2021)
- 6. V. Mäkinen, G. Navarro. Succinct Suffix Arrays Based on RLE. Nordic Journal of Computing. (2005)

XBWT runs



XBWT run-break if: $c \in out(u_i)$ and $c \notin out(u_{i+1})$

r-index for tries in: $O(r \log n) + o(n)$ bits [5]

We proved $r \leq n\mathcal{H}_k(\mathcal{T}) + \sigma^{k+1}$ (similar relation for strings! [6])

co-lex	u_1	<i>u</i> ₂	из	И4	и5	и ₆	и7	и8	U 9	<i>u</i> ₁₀	u_{11}	<i>u</i> ₁₂
	а	а	а					а			а	а
XBWT	b	Ь	Ь									
								С	С			

- 5. N. Prezza. On Locating Paths in Compressed Tries. SODA. (2021)
- 6. V. Mäkinen, G. Navarro. Succinct Suffix Arrays Based on RLE. Nordic Journal of Computing. (2005)

Thank you for your attention ©

- $\textbf{1} \ \, \text{Provide an alternative proof for the formula} \ \, |\mathcal{U}| = \frac{1}{n} \prod_{c \in \Sigma} \binom{n}{n_c}$
- 2 Introducing corresponding worst-case entropy $\mathcal{H}^{wc}(\mathcal{U})$
- 3 Introducing an empirical entropy for tries $\mathcal{H}_k(\mathcal{T})$
- **4** Compress and index a trie in $n\mathcal{H}_k(\mathcal{T}) + o(n)$ bits using the XBWT