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The Worst-Case Entropy

Definition: Worst-Case Entropy

Let U be a set, the worst-case entropy H"<(U/) of U is defined as

H™(U) = log, U]

Example, if Y = {dog, cat, bird, mouse}, then H"(U) = log,|U| = log, 4 =2
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The Worst-Case Entropy of a String

Consider the string S = aaaaaabaaaaaaaaabaaa.

® |f we consider U as the set of strings of length n = 20 over an
alphabet of size 0 = 2, then:

H"(U) = nlog o = 20 bits

® [f U is the set of strings where a and b appear 18 and 2 times:

H™(U) = log (3) ~ 7.57 bits
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The Worst-Case Entropy of a Trie

There exists a famous worst-case formula
for the set of tries having n nodes over an
alphabet of size o.

ey —tog s ()

Ex. if n=7 and o = 2, then log % (164) ~ 8.7 bits

What if we consider tries with a given symbol distribution?

1. R. Graham, D. Knuth, and O. Patashnik: Concrete Mathematics. Addison-Wesley. (1994)
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The Worst-Case Entropy of a Trie

The number of t-ary trees with a fixed

1
number of first, second, ..., t-th children
was computed using generating

1 ¥2 1N 2 functions [2].
LI 1 [
1 /2 1
[ ] | l

2
/ and 2 second children.

2
[ ] ® |n bijection with our class of tries.

1/ 'Iulzrlll_[<::>.

LT ] cer

ne = # edges labeled by the character c.

|
\ Ex. the 2-ary on the left has 4 first children
1V 2
[ ]

l

2. H. Prodinger. Counting edges according to edge-type in t-ary trees. arXiv. (2022)
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Our contributions

1
@ Provide an alternative proof for the formula /| = - H (:)
cex ¢

By using a simple bijection!

@ Introducing corresponding worst-case entropy H"(U)
© Introducing an empirical entropy for tries H,(T)

O Compress and index a trie in nH,(7) + o(n) bits using the XBWT
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The Function f : U — M

Domain: U < set of tries having nc edges labeled by c € ¥

Codomain: M < set of o X n binary matrices having nc ones at row c.
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The Function f : U — M

Domain: U < set of tries having nc edges labeled by c € ¥

Codomain: M < set of o X n binary matrices having nc ones at row c.

U U U3 U Us

To compute the matrix M = f(T):
@ Sort the nodes of 7 based on a pre-order visit.  (u1, u2, us, ug, us in fig.)

@ Set M([i][c] = 1 iff there exists the edge U; S
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Inverting Function f

The function f is injective, but not surijective: some matrices in M do not
correspond to any trie.

}@{
up uz u3 Ug us
1

f—l

Connectivity constraints could be violated during the inversion process.
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Inverting Function f

The function f is injective, but not surijective: some matrices in M do not
correspond to any trie.

up U2 U3 Us Us
a 0 0 1 0 f-1
b 0 0 >
c 0 0 0

Connectivity constraints could be violated during the inversion process.
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Inverting Function f

The function f is injective, but not surijective: some matrices in M do not
correspond to any trie.

up U2 U3 Us Us
a 0 0 1 0 f-1
b 0 0 >
c 0 0 0

Connectivity constraints could be violated during the inversion process.
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Inverting Function f

The function f is injective, but not surijective: some matrices in M do not
correspond to any trie.

uy u» us Ua Us

Connectivity constraints could be violated during the inversion process.
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Inverting Function f

The function f is injective, but not surijective: some matrices in M do not
correspond to any trie.

uy u» us Ua Us

OF

Pending edge!

Connectivity constraints could be violated during the inversion process.
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Rotating the Matrix

What happens if we rotate the matrix?

ui uz us Ua Us
a 1

Rotating

two columns!

u uz us Ug Us
a 1 0 1
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Rotating the Matrix

What happens if we rotate the matrix?

ui uz us Ua Us
a 1

Connected @

Rotating

two columns!

u uz us Ug Us

a 1 0 1

Now the matrix is invertible!
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New Worst-Case Formula Measure

That's not by chance! Using a result about integer sequences [3] we deduced:

@ Every matrix M in M has exactly n distinct rotations. n = # of columns

@ The rotation of M that is invertible exists and is unique.

3. G. Rote. Binary trees with nodes having 0, 1, and 2 children. Séminaire Lotharingien de Combinatoire. (1997)
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New Worst-Case Formula Measure

That's not by chance! Using a result about integer sequences [3] we deduced:

@ Every matrix M in M has exactly n distinct rotations. n = # of columns

@ The rotation of M that is invertible exists and is unique.
n
We observe |[M| = H ( ) ne = number of ones at the c-th row

n
ceEX c

3. G. Rote. Binary trees with nodes having 0, 1, and 2 children. Séminaire Lotharingien de Combinatoire. (1997)
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New Worst-Case Formula Measure

That's not by chance! Using a result about integer sequences [3] we deduced:

@ Every matrix M in M has exactly n distinct rotations. n = # of columns

@ The rotation of M that is invertible exists and is unique.

n
We observe |[M| = H ( ) ne = number of ones at the c-th row
ne
ceEX

Consequently, || = % H (:) and  H"(U) = Z log (:) — log n.

ceEX ceEX

3. G. Rote. Binary trees with nodes having 0, 1, and 2 children. Séminaire Lotharingien de Combinatoire. (1997)
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Formula Empirical Entropy for Tries

For w € ¥ and ¢ € X, consider the integers n,, and ny c:

e n, = |{u € V| u has context w}|

e nyc=|{u€ V| uhas context w and there exists u = v}

Example: In figure, n; = 3.

Indeed, wp, us, and ug are reached
by the string a.
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Formula Empirical Entropy for Tries

For w € ¥ and ¢ € X, consider the integers n,, and ny c:

e n, = |{u € V| u has context w}|

e nyc=|{u€ V| uhas context w and there exists u = v}

Example: In figure, n, , = 1.

Among the nodes reached by a,
only up has an outgoing edge
labeled by b.
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Formula Empirical Entropy for Tries

For w € ¥ and ¢ € X, consider the integers n,, and ny c:

e n, = |{u € V| u has context w}|

e nyc=|{u€ V| uhas context w and there exists u = v}

Example: In figure, n, , = 1.

Among the nodes reached by a,
only up has an outgoing edge
labeled by b.

Definition: k-th order empirical entropy H(7)

_ Nw,c Nw Ny — Nw,c Ny
HT) = 3 50 2 tog (1) 4 e g ()

CEX weyk
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Properties for our Entropy Measures

Properties analogous to the string entropies:
@ o(T) = H*(T) + O(c log n)

O Hi1(T) < Hi(T), for every k >0
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Properties for our Entropy Measures

Properties analogous to the string entropies:
@ o(T) = H*(T) + O(c log n)

O Hi1(T) < Hi(T), for every k >0
20b,
a b
b c a
O
S

1. R. Graham, D. Knuth, and O. Patashnik: Concrete Mathematics. Addison-Wesley. (1994)

® Worst-case entropy without character
frequencies [1] (not ours!):

log 1 ("7,) = log & (1) ~ 33.37 bits.

® Ist-order empirical entropy (ours!)
nH1(T) = 7.29 bits
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XBWT of a trie

out(u) < set of outgoing labels of u

Uy, o, ..., Uy < nodes sorted co-lexicographically

Definition: XBWT [4]

XBWT(T) = out(u), out(us), ..., out(us)

[ )
[
[
|9
[
[ 9
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4. P. Ferragina et al. Compressing and Indexing Labeled Trees, with Applications. J. ACM. (2009)



XBWT and XBWT runs
[ o)

XBWT of a trie

out(u) < set of outgoing labels of u

Uy, o, ..., Uy < nodes sorted co-lexicographically

Definition: XBWT [4]

XBWT(T) = out(u1), out(uz), . .., out(un)

We can compress and index (count queries) a trie in:

nHe(T) + o(n) Vk = o(log, n)

[ )
[
[
L))
[
L))

C C

4. P. Ferragina et al. Compressing and Indexing Labeled Trees, with Applications. J. ACM. (2009)
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XBWT runs

XBWT run-break if: ¢ € out(u;i) and ¢ ¢ out(uiy1)
r-index for tries in: O(r log n) + o(n) bits [5]

co-lex u uz us3 ug us Ug uz ug ug uio uil ui2

[ 5
()
[}
[
[ )
[ 5

5. N. Prezza. On Locating Paths in Compressed Tries. SODA. (2021)
6. V. Makinen, G. Navarro. Succinct Suffix Arrays Based on RLE. Nordic Journal of Computing. (2005)
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XBWT runs

XBWT run-break if: ¢ € out(u;i) and ¢ ¢ out(uiy1)
r-index for tries in: O(r log n) + o(n) bits [5]

We proved r < nH(T) + ok+?

(similar relation for strings! [6])

co-lex u uz us3 ug us Ug uz ug ug uio uil ui2

[ 5
[
[}
[ 5
[
[}

5. N. Prezza. On Locating Paths in Compressed Tries. SODA. (2021)
6. V. Makinen, G. Navarro. Succinct Suffix Arrays Based on RLE. Nordic Journal of Computing. (2005)



Conclusions
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Thank you for your attention ©

1 n
@ Provide an alternative proof for the formula |U| = = H ( )

n oy e
@ Introducing corresponding worst-case entropy H"<(Uf)

© |Introducing an empirical entropy for tries H, (7))

@ Compress and index a trie in nH, (7)) + o(n) bits using the XBWT
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